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Abstract The restoration of boundary conditions in one-dimensional transient inverse heat-conduction problems
(IHCP) is described. In the formulation, the boundary conditions are represented by linear relations between the
temperature and the heat flux, together with an initial condition as a function of space. The temperature inside the
solution domain, together with the space or time-dependent ambient temperature of the environment surrounding the
heat conductor, are found from additional boundary-temperature or average boundary-temperature measurements.
Numerical results obtained using the boundary-element method are presented and discussed.
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1 Introduction

Inverse methods have been instrumental in solving many important transient heat-transfer problems. For exam-
ple, inverse problems have been formulated to resolve unspecified boundary conditions in heat conduction, [1–3],
unknown initial temperature, [4,5], unknown thermophysical properties, [6–9], unknown heat sources, [10–12]
and unknown heat-transfer coefficients, [13–15]. The determination of the spacewise or time-dependent ambient
temperature has been theoretically investigated in [16,17], and in this paper, we investigate, for the first time, its
numerical reconstruction using the boundary-element method (BEM). The application of the BEM for solving
inverse heat-conduction problems has been comprehensly described in [18] for the steady state and [19] for the
unsteady state (transient). Other applications of BEM inverse analyses are described in [20]. There are several
advantages of using the BEM over the finite-element (FEM) or the finite-difference (FDM) methods. First, the
BEM only requires a boundary mesh to discretise the problem and, as such, it is very flexible and applicable to
complex geometries without having to resort to intricate internal mesh generation of unnecesary internal informa-
tion as required by the traditional FDM or FEM. Second, the unknown ambient temperature, boundary temperature
and heat flux are boundary quantites to be determined and the discretisation of the boundary only is the essence
of the BEM. Further, the heat flux is computed as part of the solution and is not a post-processing numerical dif-
ferentation. If convection occurs only on a part of the boundary of the heat conductor which may be inaccessible
to measurements, then, in principle, the ambient temperature could be determined by solving a Cauchy ill-posed
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86 T. T. M. Onyango et al.

Table 1 Nomenclature

A, z1, z2 = quantities denoted S1, S2, S11, S22 = boundaries
b0, b1, h0, h1 = given boundary t = time coordinate

functions tf = arbitrary fixed time of interest
B0, B1, F = functions tj = boundary-element endpoint
C2,1 = space of functions twice t̃j = boundary-element node

continuously differentiable in the t0 = instant at which measurements
space variable and once are made
continuously differentiable T = temperature
in the time variable T0j , T1j = discretised boundary

Cα = space of Hölder continuous temperature
functions with exponent α T ′

0j , T
′

1j = discretised heat flux
e0, e1 = average boundary- T 0

k = discretised initial
temperature measurements temperature

f0, f1, f = ambient temperatures x = space coordinate
g = initial temperature xk = cell endpoint
G = fundamental solution x̃k = cell node

H = Heaviside function ˜̃
X, X̃,X,C,D,E = matrices

K = kernel ˜̃
Z, Z̃, Z,

˜̃
Y, Ỹ , Y = vectors

n = outward normal to the boundary αn, βm = roots of transcedental equations
N = number of boundary elements χ, χ̄, χ0, χ1 = temperature measurements

on each boundary x = 0 and x = 1 γ0, γ1 = constants
N0 = number of cells η = coefficient function
p, p′ = points in the domain κ = regularization parameter
q = heat flux ρ = percentage of noise
Q = solution domain σ0, σ1 = heat-transfer coefficients

inverse heat-conduction problem using the measurements of the temperature and the heat flux on the remaining part
of the boundary.

However, in many physical problems the measurements of the temperature and the heat flux can experience
practical difficulties. Physical examples include the measurement of temperature and heat flux at a highly heated
hostile boundary, the difficulty in determination of temperature over the surface of a space vehicle during the short
reentry time, etc. [1]. Therefore, in order to prevent this experimental difficulty of measuring both the temperature
and heat flux at the same part of the boundary, in the mathematical formulation presented in Sect. 2 we allow for
the convection boundary conditions be prescribed over the whole boundary. Further, in our study, the ambient tem-
perature is allowed to vary with space or time. Hence, a more realistic model can be proposed for the heat transfer
in building enclosures, e.g., glazed surfaces, where the ambient temperature can vary from surface to surface in
the building, as well as with time, depending on the local air flow patterns, e.g., type of flow, operational states of
equipment, external weather conditions, etc. [21].

A nomenclature with the list of symbols used in the paper is provided in Table 1.

2 Mathematical formulation

The inverse heat-conduction problem (IHCP) under investigation is given by

∂T

∂t
(x, t) = ∂2T

∂x2 (x, t), for (x, t) ∈ (0, 1) × (0, tf ] =: Q (2.1)

T (x, 0) = g(x), for x ∈ [0, 1], (2.2)

∂T

∂n
(0, t) + σ0(t)T (0, t) = h0(t)f (0, t) + b0(t), for t ∈ (0, tf ], (2.3)

∂T

∂n
(1, t) + σ1(t)T (1, t) = h1(t)f (1, t) + b1(t), for t ∈ (0, tf ], (2.4)
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Restoring boundary conditions in heat conduction 87

where tf > 0 is an arbitrary fixed time of interest, g is a specified function of space representing the initial temper-
ature, σ0, σ1, h0, h1, b0 and b1 are specified functions of time, n is the outward normal to the boundary {0, 1} of
the heat conductor (0, 1), i.e., n(0) = −1, n(1) = 1, but the function f is unknown. For simplicity we assume that
there is no heat generation or loss in the system. Therefore, we study the inverse problem of restoring the unknown
function f in the boundary conditions (2.3) and (2.4) of the third kind (at the boundary of the heat conductor there
is a convective heat transfer (exchange) with the environment). Along with the temperature T in the domain, we
seek the temperature f of the environment. A related inverse problem in which the coefficients of heat transfer σ0

and σ1 are unknown will be investigated in a separate work. In this paper, we investigate two situations, namely:

(i) when the function f (x, t), x ∈ {0, 1}, t ∈ (0, tf ] depends on x only, in which case we have to determine the
constants f0 and f1 entering the boundary conditions (2.3) and (2.4), respectively, and

(ii) when the function f (x, t), x ∈ {0, 1} , t ∈ (0, tf ] depends on t only, in which case we have to determine the
same function f (t), entering the boundary conditions (2.3) and (2.4).

In both cases, additional information called “effect” is necessary to be measured in order to compensate for the
unknown “causes” of the inverse problems. In what follows we shall distinguish between the two situations (i) and
(ii) defined as Problem I and Problem II, respectively.

3 Problem I

In Problem I, the function f (x, t), x ∈ {0, 1}, t ∈ (0, tf ] depends on x only, i.e., f (0, t) = f0 = constant and
f (1, t) = f1 = constant. We further assume that σ0(t) = σ0 = constant and σ1(t) = σ1 = constant. Then the
boundary conditions (2.3) and (2.4) become

∂T

∂n
(0, t) + σ0T (0, t) = f0h0(t) + b0(t) =: B0(t), for t ∈ (0, tf ], (3.1)

∂T

∂n
(1, t) + σ1T (1, t) = f1h1(t) + b1(t) =: B1(t), for t ∈ (0, tf ], (3.2)

respectively. Since in the situation (i) there are two extra constants f0 and f1 as unknowns, we assume that two
measurements of the boundary temperature at the same fixed time t0 ∈ (0, tf ] are available, namely

T (0, t0) = χ0, T (1, t0) = χ1. (3.3)

Alternatively, instead of (3.3) we can measure the average boundary temperature as

e0 =
∫ tf

0
T (0, t)dt, e1 =

∫ tf

0
T (1, t)dt. (3.4)

Of course, in higher dimensions the parameter estimation problem will become a function estimation problem.
Conditions (3.3) and (3.4) are called terminal and integral boundary observations, respectively. Then we have the
following uniqueness theorem.

Theorem 3.1 ([16]) Suppose g ∈ C1([0, 1]), hi, bi ∈ C([0, tf ]), σi ≥ 0, and the functions hi > 0 are monotone
nondecreasing, i = 0, 1, on (0, tf ]. Then a solution (T ∈ C2,1(Q), f0, f1) to the inverse problem (2.1), (2.2),
(3.1)–(3.3), or (2.1), (2.2), (3.1), (3.2) and (3.4) is unique.

Remarks

(i) For the uniqueness of the problem (2.1), (2.2), (3.1), (3.2) and (3.4), it is sufficient to require that
∫ tf

0 hi(t)dt

> 0, i = 0, 1;
(ii) the IHCP can be recast as a Fredholm integral equation of the first kind which is a classical example of an

ill-posed problem, [22];
(iii) a function T satisfying (2.1), (2.2), (3.1) and (3.2) has the representation, [23, pp. 59–69],
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88 T. T. M. Onyango et al.

T (x, t) =
∞∑

m=1

e−β2
mtK(βm, x)

[∫ 1

0
K(βm, x

′
)
(
g(x

′
) − z1x

′ − z2

)
dx

′

+
∫ t

0
eβ2

mt
′
A(βm, t

′
)dt

′ + z1x + z2

]
, (3.5)

z1 = σ1g
′
(0) + σ0g

′
(1) + σ1σ0 (g(1) − g(0))

σ0 + σ1 + σ0σ1
, z2 = g

′
(1) + σ1g(1) − (1 + σ1)g

′
(0) + σ0(1 + σ1)g(0)

σ0 + σ1 + σ0σ1
,

A(βm, t) = K(βm, 0) [B0(t) + z1 − σ0z2] + K(βm, 1) [B1(t) − σ1z2 − (1 + σ1)z1]

= K(βm, 0)
[
h0(t)f0 + b0(t) + g

′
(1) − σ0g(0)

]
+ K(βm, 1)

[
h1(t)f1 + b1(t) − g

′
(1) − σ1g(1)

]
,

and the kernel K(βm, x) is given by

K(βm, x) =
√

2 (βm cos(βmx) + σ0 sin(βmx))√(
β2

m + σ 2
0

) (
1 + σ1

β2
m+σ 2

1

)
+ σ0

,

where βm are the positive roots of the transcedental equation

tan(β) = β (σ0 + σ1)

β2 − σ0σ1
.

The expression (3.5) involves a complicated series expansion and in higher dimensions there is little hope it can
be usable. Therefore, numerical methods which are able to discretise any multidimensional problem analogous to
the one above appear more useful.

4 The BEM

It is well-known that in recent years the boundary-element method (BEM) has been established to be one of the
most powerful tools in solving practical problems in science and engineering. Using the BEM, the heat equation
(2.1) can be recast in the integral form [24],

η(x)T (p) =
∫

S1

[
G(p;p′)∂T

∂n
(p′) − T (p′)∂G

∂n
(p;p′)

]
dS1 +

∫
S2

T (p′)G(p;p′)dS2, p′ = (x, t) ∈ Q, (4.1)

where S1 = {0, 1} × (0, tf ], S2 = [0, 1] × {0}, η(x) = 1 if x ∈ (0, 1), η(0) = η(1) = 0.5, and

G(x, t; ξ, τ ) = H(t − τ)

2
√

π(t − τ)
exp

(
− (x − ξ)2

4(t − τ)

)
, (4.2)

where H is the Heaviside function.

4.1 Numerical discretisation

In practice the integral equation (4.1) may rarely be solved analytically and thus some form of numerical approxi-
mation is necessary.

The boundary S1 is discretised into a series of N boundary elements, namely,

S11 = {0} × (0, tf ] = ∪N
j=1{0} × (tj−1, tj ], S12 = {1} × (0, tf ] = ∪N

j=1{1} × (tj−1, tj ].
Also the boundary S2 is discretised into a series of N0 cells, namely,

S2 = [0, 1] × {0} = ∪N0
k=1[xk−1, xk] × {0}.
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Restoring boundary conditions in heat conduction 89

Over each time boundary element (tj−1, tj ] the temperature T and the heat flux ∂T
∂n

are assumed to be constant and
take their values at the mid-point t̃j = (tj−1 + tj )/2, i.e.,

T (0, t) = T (0, t̃j ) = T0j , T (1, t) = T (1, t̃j ) = T1j , for t ∈ (tj−1, tj ], (4.3)

∂T

∂n
(0, t) = ∂T

∂n
(0, t̃j ) = T

′
0j ,

∂T

∂n
(1, t) = ∂T

∂n
(1, t̃j ) = T

′
1j , for t ∈ (tj−1, tj ]. (4.4)

Also over each space cell [xk−1, xk) the temperature T is assumed constant and takes its values at the mid point
x̃k = (xk−1 + xk)/2, i.e.,

T (x, 0) = T (x̃_k, 0) = T 0
k , for x ∈ [xk−1, xk). (4.5)

Then using the approximations (4.3–4.5), the integral equation (4.1) can be discretised as

η(x)T (x, t) =
N∑

j=1

[
T

′
0j

∫ tj

tj−1

G(x, t, 0, τ )dτ + T
′

1j

∫ tj

tj−1

G(x, t, 1, τ )dτ

]

−
N∑

j=1

[
T0j

∫ tj

tj−1

∂G

∂n0
(x, t; 0, τ ) + T1j

∫ tj

tj−1

∂G

∂n1
(x, t; 1, τ )

]

+
N0∑
k=1

T 0
k

∫ xk

xk−1

G(x, t; y, 0)dy, (x, t) ∈ [0, 1] × (0, tf ], (4.6)

where n0 and n1 represent the outward normals at the boundaries x = 0 and x = 1, respectively. Equation (4.6)

can be rewritten as

η(x)T (x, t) =
N∑

j=1

[
T

′
0jC

0
j (x, t) + T

′
1j (x, t)C1

j (x, t) − T0jD
0
j (x, t)

− T1jD
1
j (x, t)

]
+

N0∑
k=1

T 0
k Ek(x, t), (x, t) ∈ [0, 1] × (0, tf ], (4.7)

where the coefficients are given by

C
ξ
j (x, t) =

∫ tj

tj−1

G(x, t; ξ, τ )dτ =
∫ tj

tj−1

H(t − τ)

2
√

π(t − τ)
exp

(
− (x − ξ)2

4(t − τ)

)
dτ,

D
ξ
j (x, t) =

∫ tj

tj−1

∂

∂ηξ

G(x, t; ξ, τ )dτ =
∫ tj

tj−1

H(t − τ)

4
√

π(t − τ)3
|x − ξ |exp

(
− (x − ξ)2

4(t − τ)

)
dτ,

Ek(x, t) =
∫ xk

xk−1

G(x, t; y, 0)dξ =
∫ xk

xk−1

1

2
√

πt
exp

(
− (x − y)2

4t

)
dy,

where ξ ∈ {0, 1}. These integrals can be evaluated analytically and their expressions are given by:

C
ξ
j (x, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ≤ tj−1[
(t − tj−1)/π

]1/2
, tj−1 < t ≤ tj ;

r = 0

r[exp(−z2)/z − π1/2erfc(z)]/(2π1/2), tj−1 < t ≤ tj ;
r �= 0[

(t − tj−1)
1/2 − (t − tj )

1/2
]
/π1/2, tj < t;

r = 0
r[exp(−z2)/z − exp(−z2

1)/z1+
π1/2{erfc(z) − erf(z1)}]/(2π1/2), tj < t; r �= 0
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D
ξ
j (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ≤ tj−1

0, tj−1 < t ≤ tj ; r = 0
−erfc(z)/2, tj−1 < t ≤ tj ; r �= 0
[erf(z) − erf(z1)] /2, tj < t

Ek(x, t) = 1

2

[
erf

(
x − xk−1

2t1/2

)
− erf

(
x − xk

2t1/2

)]
,

where the functions erf and erfc are the error functions, and

r = |x − ξ |, z = r
(t − tj−1)

−1/2

2
, z1 = r

(t − tj )
−1/2

2
.

If (4.7) is applied at every node on the boundary S1 then the following set of linear algebraic equations is obtained:

N∑
j=1

[
C

0ξ
ij T

′
0j + C

1ξ
ij T

′
1j − D

0ξ
ij T0j − D

1ξ
ij T1j

]
+

N0∑
k=1

Eik(ξ)T 0
k = 0, i = 1, N, ξ ∈ {0, 1}, (4.8)

where the matrices C0ξ ,C1ξ , D0ξ and D1ξ are defined by

C
0ξ
ij = C

ξ
j (0, t̃i ), C

1ξ
ij = C

ξ
j (1, t̃i ),

D
0ξ
ij = D

ξ
j (0, t̃i ) + 0.5δij (1 − ξ), D

1ξ
ij = D

ξ
j (1, t̃i ) + 0.5δij ξ,

E
ξ
ik = Ek(ξ, t̃i ), ξ ∈ {0, 1}.

On applying the boundary conditions (3.1) and (3.2) at the nodes (0, t̃i ) and (1, t̃i ), respectively, for i = 1, N , we
obtain the following equations:

T ′
0i = h0if0 + b0i − σ0T0i , T ′

1i = h1if1 + b1i − σ1T1i , i = 1, N, (4.9)

where h0i = h0(t̃i ), h1i = h1(t̃i ), b0i = b0(t̃i ) and b1i = b1(t̃i ). Also, on applying the initial condition (2.2) at the
cell nodes (x̃k, 0), for k = 1, N0, the values of T 0

k are determined, namely

T 0
k = T (x̃k, 0) = g(x̃k) = gk, k = 1, N0. (4.10)

Also, instead of (3.3) and (3.4) we write, by taking t0 = t̃i0 with i0 ∈ {1, . . . , N} fixed,

T0i0 = χ0, T1i0 = χ1, (4.11)

and

e0 =
N∑

i=1

T0i (ti − ti−1), e1 =
N∑

i=1

T1i (ti − ti−1), (4.12)

respectively.
The IHCP given by Eqs. (2.1), (2.2), (3.1), (3.2), and (3.3) or (3.4) reduces to its discretised version given by

Eqs. (4.8)–(4.10), (4.11) or (4.12). Then the resulting system of equations becomes of the form

XY = Z, (4.13)

where X is a known (4N + 2) × (4N + 2) square matrix which contains the influence matrices C0, C1, D0, D1

and E, Y is a vector of 4N + 2 unknowns, namely T0j , T1j , T
′
0j , T

′
1j , f0 and f1, recast as

Yj = T0j for j = 1, N,

Yj = T1(j−N) for j = N + 1, 2N,

Yj = T
′
0(j−2N) for j = 2N + 1, 3N,

Yj = T
′
1(j−3N) for j = 3N + 1, 4N,

Y4N+1 = f0 and Y4N+2 = f1,
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Restoring boundary conditions in heat conduction 91

and Z is a vector of 4N + 2 known elements defined by

Zj = −
N0∑
k=1

Ejk(0)gk for j = 1, N,

Zj = −
N0∑
k=1

E(j−N)k(1)gk for j = N + 1, 2N,

Zj = b0(j−2N) for j = 2N + 1, 3N,

Zj = b1(j−3N) for j = 3N + 1, 4N,

Z4N+1 = χ0 and Z4N+2 = χ1 for (4.11),

or,

Z4N+1 = e0 and Z4N+2 = e1 for (4.12).

For simplicity, with the assistance of (4.9) we can choose to eliminate T
′
0j and T

′
1j , so as to reduce the system

of equations to have 2N + 2 unknowns in 2N + 2 equations. This reduces the system of (4.13) considerably, to the
generic form

X̃Ỹ = Z̃ (4.14)

containing as unknowns Ỹj = T0j , j = 1, N , Ỹj = T1(j−1), j = (N + 1), 2N , Ỹ2N+1 = f0, Ỹ2N+2 = f1. Once
the system of equations (4.14) is solved, Eq. (4.9) yields by direct substitution the heat flux and the temperature
T (x, t) in the solution domain is obtained explicitly using the integral equation (4.7). Of course, to determine f0

and f1 we could have solved the problem only on the interval [0, 1] × [0, t0], but since the boundary temperature
and heat flux are also required to be determined on the whole time interval [0, tf ] we have solved the problem on
this whole interval. Furthermore, Eq. (4.14) over the whole interval [0, tf ] is required for the integral observation
(4.7).

The system of linear algebraic equations (4.14) can be solved using the Gaussian elimination method. In the
event that this method fails to give satisfactory results, due to the ill-conditioning of the matrix X̃, one of the
options would be to use regularization methods, such as the Tikhonov regularization or the truncated singular-value
decomposition methods [25].

5 Numerical results and discussion for Problem I

5.1 Example 1

In this section we solve the IHCP given by (2.1) in the domain Q = (0, 1) × (0, tf = 1], subject to the initial
condition (2.2) of the form

T (x, 0) = g(x) = x2, x ∈ [0, 1], (5.1)

the boundary conditions (3.1) and (3.2) with σ0 = σ1 = 1, h0(t) = h1(t) = t , b0(t) = 0, b1(t) = 3, i.e.,

∂T

∂n
(0, t) + T (0, t) = f0t,

∂T

∂n
(1, t) + T (1, t) = f1t + 3, t ∈ (0, 1], (5.2)

and the additional measurements (3.3) taken at t0 = t̃i0 with i0 ∈ {1, .., N} fixed, namely

T (0, t̃i0) = 2t̃i0 = χ0, T (1, t̃i0) = 1 + 2t̃i0 = χ1. (5.3)

It can easily be seen that the conditions of Theorem 3.1 are satisfied and therefore, a solution to the IHCP given by
(2.1), (5.1–5.3) is unique. Further, this analytical solution (T (x, t), f0, f1) to be determined is given by T (x, t) =
x2 + 2t, f0 = f1 = 2. Noise is introduced in the measurement (5.3) by replacing χi with χi(1 + ρ) for i = 0, 1,
where ρ is the percentage of noise. The condition number of the matrix X̃, Cond(X̃), in (4.14) has been calculated
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92 T. T. M. Onyango et al.

Table 2 The condition number of the matrix X̃, Cond(X̃), and the constants f0 and f1, when i0 = 1 for various (N0, N) (no noise)

N0 N = 20 N = 40 N = 80 N = 160

Cond(X̃) 8 × 104 8 × 105 9 × 106 1 × 108

f0 1.9527 1.8671 1.6252 0.9415
20 f1 2.2876 3.2053 6.9189 22.4320

f0 1.9876 1.9662 1.9054 1.7342
40 f1 2.0723 2.3023 3.2452 7.0871

f0 1.9964 1.9909 1.9755 1.9323
80 f1 2.0186 2.0770 2.3142 3.2769

f0 1.9986 1.9971 1.9930 1.9819
160 f1 2.0051 2.0206 2.0817 2.3259
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Fig. 1 The numerical and analytical boundary temperatures
T (0, t), as functions of time t , when i0 = 1 for various (N0, N)

(no noise)

0.19.08.07.06.05.04.03.02.01.00.0

t

0.1

5.1

0.2

5.2

0.3

5.3

0.4

T
(1

,t)

)lacitylana(T

)061,061(T

)08,08(T

)04,04(T

)02,02(T

Fig. 2 The numerical and analytical boundary temperatures
T (1, t), as functions of time t , when i0 = 1 for various (N0, N)

(no noise)

using the NAG routine F07AGF. The BEM mesh has been taken uniform, i.e., xk = k/N0, k = 0, N0, tj = j tf /N ,
j = 0, N .

In Table 2, we find that increasing the number of time elements N from 20 to 160, when i0 = 1, results in
condition numbers of matrix X̃ increasing significantly. The error in f0 is far less than that in f1, a fact that is
attributed to the smaller value of the additional measurement χ0 in comparison to χ1. However, for a fixed number
of time elements N , the accuracy in the numerical approximations improve when increasing the number of space
cells N0. This is because: (i) the number of space cells increases the accuracy of the approximation (4.10), and (ii)
the boundary values χ0 and χ1 are measured at the same point from the initial condition, thus the ill-conditioning
of the system of equations remains unchanged. The best results are obtained when N = 20 and N0 = 160.

Figures 1–4 show the boundary temperature and the heat flux for various values of (N0, N). Reasonable numerical
approximations to the exact solutions are obtained.

Figure 5 shows the temperature contours when the measurement (3.3) is taken at i0 = 1 in the absence of noise.
We observe some inaccuracies in the temperature, especially with increasing time, and particularly towards the
boundary x = 1 where the maximum of the T (x, t) = x2 + 2t occur.

In Table 3, when i0 = 1 and noise is introduced in the data (3.3), as expected, the approximated values of the
constants f0 and f1 blow up, but they improve slightly with the increasing value of N0, when N is fixed. On the
other hand, the inaccuracy in the numerical approximations of f0 and f1 worsen with increasing N , for a fixed N0.
These inaccurate results which are full of significant jumps in the values of f0 and f1 demonstrate the instability of
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Fig. 6 The normalised singular values sv(i)
sv(1)

, for the IHCPs
given by Example 1, when (N0, N) = (40, 40), as a function
of i, when i0 = 1(	) and i0 = N(+)

the numerical solution of the system of equations (4.14) for the IHCP given by Example 1 when i0 = 1, since the
measurement time t̃i0 = t̃1 = 1/(2N) is too close to the initial time t = 0 for sufficient additional propagation of
information to have been recorded yet. Finally, we note that using Tikhonov’s regularization method of zeroth and
first-order taking 10−12 < κ < 10−1 as regularisation parameter did not improve the results in predicting f0 and
f1. Similarly, when the last two smallest singular values are zeroed, the use of truncated SVD did not also improve
the numerical results. In Fig. 6, the last two singular values are near zero when i0 = 1 and thus they increase the
condition number significantly, whereas when i0 = N , the matrix X̃ has normalised singular values reducing from 1
to approximately 0.1, which is not very low hence, the system becomes well-conditioned.

In Table 4, when i0 = N , the condition numbers of the system remain low, and the approximate values of f0 and
f1 are stable and accurate being the same for all values of N0 and being almost the same for all values of N , when
1% noise is introduced in (3.3).
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Table 3 The constants f0 and f1, when i0 = 1 for various (N0, N) (1% noise)

N0 N = 20 N = 40 N = 80 N = 160

f0 2.0847 2.0456 1.8694 1.2786
20 f1 5.0617 10.5252 26.7621 76.6997

f0 2.1198 2.1447 2.1497 2.0713
40 f1 4.846 9.6222 23.0254 61.3548

f0 2.1285 2.1694 2.2197 2.2694
80 f1 4.7927 9.3968 22.0944 57.5445

f0 2.1307 2.1756 2.2372 2.3189
160 f1 4.7793 9.3405 21.8618 56.5935

Table 4 The condition
number of the matrix X̃,
Cond(X̃), and the constants
f0 and f1, when i0 = N and
N0 ∈ {20, 40, 80, 160} for
various N (1% noise)

N = 20 N = 40 N = 80 N = 160

Cond(X̃) 705.4 2576.7 9910.3 3911.7
f0 2.0268 2.0266 2.0666 2.0265
f1 2.0593 2.0588 2.0585 2.0584

Next, we maintain the number of time steps and space cells fixed at (N,N0) = (40, 40), but we vary the value
of i0 at which the measurements (3.3) are taken.

Numerical approximations obtained when 1% noisy temperature measurements (3.3) are taken at various values
of i0 ∈ {1, . . . , N} are shown in Table 5. In Table 5 the condition numbers when i0 = 1 and i0 = N = 40 are very
large and low, respectively. This shows that the system of equations (4.14) is well-conditioned when i0 = N = 40
and gradually becomes ill-conditioned when reducing i0 to 1, such that the approximate values of the constants f0

and f1, when i0 approaches N become more accurate, but become significantly inaccurate when i0 approaches 1;
see Table 5. The condition number drops sharply from approximately 89.176 × 104 for i0 = 1 to 0.258 × 104 for
i0 = N . However, the numerical approximations of the solutions when i0 = 1 were significantly inaccurate due to
the failure of the unstable inversion Ỹ=X̃−1Z̃ of the Gaussian elimination method, such that during computation
more noise filters back into the system, causing an amplification effect of the error. In order to investigate in more
detail the case i0, we have re-run the BEM computational program for tf = 1/79, and N = N0 = 40, such that
the old t̃i0 for tf = 1, becomes now a new t̃iN for tf = 1/79. The resulting approximations of the constants f0 and
f1 when noise and no noise is introduced into the additional condition are not improved when compared with the
corresponding approximations in Tables 2 and 3.

Finally, Table 6 presents the condition number of the matrix X̃ and the constants f0 and f1, when, instead of (3.3),
the additional measurements (3.4) with e0 = 1 and e1 = 2 are imposed, both with 1% noise and without noise. This
results into a relatively stable system of equations (4.14), with low condition number and generation of accurate
and stable approximations of the constants f0 and f1. Other test examples have been investigated producing the
same qualitative conclusions.

6 Problem II

In Problem II, the function f (x, t), x ∈ {0, 1}, t ∈ (0, tf ] depends on t only, i.e., f (0, t) = f (1, t) =: f (t).
Denoting σ0(t) := σ(0, t) and σ1(t) := σ(1, t) the boundary conditions (2.3) and (2.4) become

∂T

∂n
(0, t) + σ0(t)T (0, t) = h0(t)f (t) + b0(t), for t ∈ (0, tf ], (6.1)

∂T

∂n
(1, t) + σ1(t)T (1, t) = h1(t)f (t) + b1(t), for t ∈ (0, tf ], (6.2)
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Table 5 The variation of the condition number of the matrix X̃, Cond(X̃), and the constants f0 and f1, as a function of i0 = 1, N ,
when (N0, N) = (40, 40) (1% noise)

Cond(X̃)
i0 (×104) f0 f1

1 89.176 2.1447 9.6222
2 24.064 2.1371 4.1400
4 7.472 2.0990 2.7171
8 2.530 2.0672 2.2874

12 1.364 2.0517 2.1804
16 0.886 2.0430 2.1332
20 0.640 2.0375 2.1069
24 0.495 2.0338 2.0902
28 0.402 2.0312 2.0786
32 0.338 2.0292 2.0702
36 0.293 2.0278 2.0638
39 0.270 2.0269 2.0599
40 0.258 2.0266 2.0588

Table 6 The condition
number of the matrix X̃,
CondX̃, and the constants
f0 and f1 when the
additional measurements
(3.4) instead of (3.3) are
imposed, for various
(N0, N) (no noise and 1%
noise)

Cond(X̃)
N0, N (×104) ρ = 0.00 ρ = 0.01

f0 1.9998 2.0288
20,20 13.30 f1 2.0002 2.0964

f0 1.9998 2.0292
40,40 26.98 f1 2.0000 2.0963

f0 1.9999 2.0293
80,80 54.83 f1 2.0000 2.0963

f0 1.9999 2.0293
160,160 111.30 f1 1.9999 2.0963

where σi(t), hi(t), bi(t) are given functions of time, i = 0, 1, but the function f (t) is unknown. The additional
information is given by the boundary temperature measurement

T (x, t) = χ(t), for t ∈ [0, tf ], (6.3)

where x = 0 or x = 1.
Alternatively, instead of (6.3) we can measure the boundary observation

γ0T (0, t) + γ1T (1, t) = χ(t), for t ∈ [0, tf ], (6.4)

where γ0 and γ1 are given constants. Conditions (6.3) and (6.4) are called a point and an integral boundary obser-
vation, respectively.

We denote the solution of the direct problem (2.1), (2.2), and (6.1) and (6.2) with f = 0, i.e.,

∂T 0

∂n
(0, t) + σ0(t)T

0(0, t) = b0(t), for t ∈ (0, tf ], (6.5)

∂T 0

∂n
(1, t) + σ1(t)T

0(1, t) = b1(t), for t ∈ (0, tf ], (6.6)

by T 0(x, t), and introduce the function χ(t) = χ(t) − T 0(x, t), where x = 0 or x = 1 for condition (6.3), and
χ(t) = χ(t) − γ0T

0(0, t) − γ1T
0(1, t) for condition (6.4). We also introduce the condition

χ ∈ C1/2([0, tf ]), F (t) := d

dt

∫ t

0

χ(τ)√
t − τ

dτ ∈ C([0, tf ]), (6.7)
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where Cα is the space of Hölder continuous functions with exponent α. Then we have the following existence,
uniqueness and stability theorem.

Theorem 6.1 ([17]) Suppose g ∈ C1([0, 1]), σi , hi, bi ∈ C([0, tf ]), i = 0, 1 and h0(t) �= 0 or h1(t) �= 0 for
condition (6.3), or γ0h0(t) + γ1h1(t) �= 0 for condition (6.4), for all t ∈ [0, tf ]. Further, suppose that condition
(6.7) is satisfied. Then there exists a unique solution (T(x, t) ∈ C2,1(Q), f ∈ C([0, tf ])) of the inverse problem
(2.1), (2.2), (6.1–6.3), or (2.1), (2.2), (6.1), (6.2), (6.4). Furthermore, the stability conditions

||f || + ||T − T 0|| ≤ C||F ||, (6.8)

||f || + ||T || ≤ C

(
||g|| + ||b0|| + ||b1|| + || d

dt

∫ t

0

χ(τ)√
t − τ

dτ ||
)

(6.9)

for some positive constant C, are valid, where the norms are in the space of continuous functions.

From Theorem 6.1 it follows that under its hypotheses the inverse Problem II is solvable and well-posed, i.e., it
is also stable in the appropriate topology, as given by the stability estimates (6.8) and (6.9).

7 The BEM for Problem II

Now instead of (4.9) we have the discretised version of (6.1) and (6.2), namely,

T
′
0i + σ0iT0i = h0ifi + b0i , T

′
1i + σ1iT1i = h1ifi + b1i , i = 1, N, (7.1)

where σ0i = σ0(t̃i ), σ1i = σ1(t̃i ) and fi = f (t̃i). Also, the discretised versions of (6.3) and (6.4) read as

T0i = χi or T1i = χi, i = 1, N, (7.2)

and

γ0T0i + γ1T1i = χi, i = 1, N, (7.3)

respectively, where χi = χ(t̃i) The IHCP given by (2.1), (2.2), (6.1), (6.2), and (6.3) or (6.4) reduces to its discretised
version given by (4.8), (4.10), (7.1), and (7.2) or (7.3). Remark that from (7.1) we can eliminate fi , i.e.,

fi = T
′
0i + σ0iT0i − b0i

h0i

or
T

′
1i + σ1iT1i − b1i

h1i

= fi, i = 1, N, (7.4)

depending on which data h0(t) or h1(t) is non-zero on the interval [0, tf ]. Based on the above elimination process,
the whole inverse problem can be reduced to a 3N × 3N system of equations of the type (4.14) which in a generic
form can be writen as
˜̃
X

˜̃
Y = ˜̃

Z, (7.5)

where the unknown vector ˜̃
Y contains the components of (T

′
0i )i=1,N , (T

′
1i )i=1,N and (T0i )i=1,N or (T1i )i=1,N ,

regarding whether they are known or unknown with respect to condition (6.3). Once Y is found, (fi)i=1,N can be
obtained from (7.4).

8 Numerical results and discussion for Problem II

8.1 Example 2

In this example, we solve the IHCP given by the heat equation (2.1) in the domain Q = (0, 1)× (0, tf = 1], subject
to the initial condition (5.1), the boundary conditions (6.1) and (6.2) with σ0 = σ1 = 1, h0 = h1 = 2, b0 = 0 and
b1 = 3, i.e.,
∂T

∂n
(0, t) + T (0, t) = 2f (t),

∂T

∂n
(1, t) + T (1, t) = 2f (t) + 3, t ∈ (0, 1], (8.1)
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and the additional measurement (6.3) at x = 0, i.e.,

T (0, t) = χ(t) = 2t, t ∈ [0, 1]. (8.2)

To check that the hypotheses of Theorem 6.1 are satified and thus conclude the unique solvability of the inverse
problem given by (2.1), (5.1), (8.1) and (8.2), we need first to compute the solution T 0(x, t) of the direct problem
(2.1), (5.1), (6.5) and (6.6), i.e.,

∂T 0

∂t
(x, t) = ∂2T 0

∂x2 (x, t), (x, t) ∈ (0, 1) × (0, 1], (8.3)

T 0(x, 0) = x2, x ∈ [0, 1], (8.4)

∂T 0

∂n
(0, t) + T 0(0, t) = 0,

∂T 0

∂n
(1, t) + T 0(1, t) = 3, t ∈ (0, 1]. (8.5)

The analytical solution of the problem (8.3–8.5) is given by, [26, pp. 114–118],

T 0(x, t) = x + 1 + 2
∞∑

n=1

e−α2
nt (αn cos(αnx) + sin(αnx))

α2
n + 3

∫ 1

0
(x2 − x − 1) (αn cos(αnx) + sin(αnx)) dx, (8.6)

where αn are the positive real roots of the transcedental equation

tan(α) = 2α

α2 − 1
. (8.7)

Remarking that from (8.7) we have

sin(α) = 2α

α2 + 1
, cos(α) = α2 − 1

α2 + 1
, (8.8)

and performing the integration in (8.6), we obtain

T 0(x, t) = x + 1 − 8
∞∑

n=1

1

α3
n(α

2
n + 3)

(αn cos(αnx) + sin(αnx)) e−α2
nt . (8.9)

From (8.4) and (8.9) we obtain the important identity

x + 1 − x2

8
=

∞∑
n=1

αn cos(αnx) + sin(αnx)

α3
n(α

2
n + 3)

, x ∈ [0, 1]. (8.10)

Differentiating twice with respect to x and setting x = 0, we obtain the identity 1
4 = ∑∞

n=1
1

α2
n+3

. Using (8.2) and

(8.9) we have

χ(t) = χ(t) − T 0(0, t) = 2t − 1 + 8
∞∑

n=1

1

α2
n(α

2
n + 3)

e−α2
nt . (8.11)

Clearly, χ ∈ C
1
2 ([0, 1]) and χ(0) = 0 since from (8.4) we have T 0(0, 0) = 0 and from (8.2) we have χ(0) = 0.

Consider now the function F defined in (6.7), namely,

F(t) = d

dt

∫ t

0

1√
t − τ

(
2τ − 1 + 8

∞∑
n=1

1

α2
n(α

2
n + 3)

e−α2
nτ

)
dτ

= 4
√

t − 1√
t

+ 8
∞∑

n=1

1

α2
n(α

2
n + 3)

d

dt

∫ t

0

e−α2
nτ

√
t − τ

dτ

= 4
√

t − 1√
t

+ 8√
t

∞∑
n=1

1

α2
n(α

2
n + 3)

− 8
√

π

∞∑
n=1

erfi(
√

tαn)

αn(α2
n + 3)

e−α2
nt , (8.12)
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where erfi is the imaginary error function which for real value of x is defined as

erfi(x) = 2√
π

ex2
∫ ∞

0
e−t2

sin(2xt)dt.

Since χ(0) = 0, from (8.10), we have that −1 + 8
∑∞

n=1 1/(α2
n(α

2
n + 3)) = 0, so that F(t) = 4

√
t −

8
√

π
∑∞

n=1 e−α2
nterfi(

√
tαn)/(αn(α

2
n + 3)) ∈ C([0, 1]).

The series in (8.12) is uniformly convergent on [0, 1] since

8
√

π

∞∑
n=1

erfi(
√

tαn)

αn(α2
n + 3)

e−α2
nt = 16

∞∑
n=1

1

αn(α2
n + 3)

∫ αn

√
t

0
eσ 2−α2

ntdσ

≤ 16
∞∑

n=1

1

αn(α2
n + 3)

∫ αn

√
t

0
dσ = 16

√
t

∞∑
n=1

1

α2
n + 3

= 4
√

t .

Therefore, the conditions of Theorem 6.1 are satisfied and hence the inverse problem (2.1), (5.1), (8.1) and (8.2),
is solvable. It is easy to verify that the unique solution is given by f (t) = t , T (x, t) = x2 + 2t .

Figure 7 shows the normalised singular values of the system of equations (7.5) of 3N equations with 3N unknowns
T1,i , T

′
0,i and T

′
1,i , i = 1, N , when (N0, N) = (40, 40). This BEM mesh was used in all the numerical results pre-

sented in the figures of this section. From Figure 7, it can be seen that the normalised singular values reduce from 1
to approximately 0.02, which gives the condition number equal to approximately 50 = sv(1)/sv(120). Thus, the
system of equations (7.5) is quite well-conditioned, as expected from the stability of the solution given in Theorem
6.1.

In order to test the stability of the numerical inversion, both additive and multiplicative noise are introduced in
the measurement data (6.3). The additive noise is introduced as

T ε
0i = 2t̃i + εi, i = 1, N, (8.13)

where εi are Gaussian random variables with zero mean and standard deviation 2ρ, where ρ is the percentage of
noise, generated using the NAG routine G05DDF.

The multiplicative noise is introduced as

T ε
0i = 2t̃i (1 + ρεi), i = 1, N, (8.14)

where εi are random variables taken from a uniform distribution in [−1,1], generated using the NAG routine
G05DAF.

Figure 8 shows the analytical and the additive noisy T (0, t), as functions of time t . We observe that the noisy
T (0, t) is more pronounced around tf = 1 and evenly distributed on either sides of the analytical curve in the other
portions of the graph.

Figures 9–12 show the numerical solutions for T (1, t), q(0, t) := −∂T /∂x(0, t), q(1, t) := ∂T /∂x(1, t) and
f (t), respectively, when ρ = 0, i.e., no noise, and ρ = 5% additive noise is introduced into the data (8.13). For
no noise, the numerical results are in excellent agreement with the exact solutions T (1, t) = 1 + 2t , q(0, t) = 0,
q(1, t) = 2 and f (t) = t . However, when noise is introduced, the numerical solutions shown by (− 	 −) have a
more prononounced disagreement with the corresponding exact solutions, especially near t = 1, because they are
obtained from the input values T (0, t) which also had larger errors near t = 1, as shown in Fig. 8. Furthermore, as
is expected, the heat-flux prediction is less accurate than the boundary-temperature prediction.

Although not illustrated, it is reported that some regularised features of the heat flux can be further obtained if one
uses the truncated singular-value decomposition, for solving the direct ill-posed problem of retrieving higher-order
(Neumann) derivatives from noisy lower-order (Dirichlet) data T (0, t) and T (1, t) shown by (− 	 −) in Figs. 8
and 9, respectively [27].

Finally, Table 7 compares the numerical solutions for the interior temperature when no noise, 1% and 5% addi-
tive noise is introduced into the temperature measurement as in (8.13), for various numbers of space cells and
time boundary elements (N0, N), in comparison with the analytical solution T (0.5, 0.5) = 1.25. The numerical
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Fig. 10 The analytical and the numerical solutions for the heat
flux q(0, t), as functions of time t (5% additive noise)

results show very good agreement with the analytical solution for errorless data and the stability of the numerical
solution for noisy data. The same conclusions are obtained when input data contaminated with the multiplicative
noise (8.14), instead of the additive noise (8.13), are inverted.

9 Conclusions

Inverse problems in heat conduction which require finding the spacewise or time-dependent, ambient temperature
appearing in the boundary conditions from additional terminal, integral or point observations have been investigated.
Under these additional measurements (observations) solvability results are available [16,17]. The solutions of the
inverse problems have been found numerically using the BEM. It was illustrated that the numerical BEM produced
convergent and stable numerical results. In the spacewise-dependent ambient temperature case the ill-conditioning
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Fig. 11 The analytical and the numerical solutions for the heat
flux q(1, t), as functions of time t (5% additive noise)
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Fig. 12 The analytical and the numerical solutions for the func-
tion f (t), as functions of time t (5% additive noise)

Table 7 The analytical and the numerical solutions for the interior temperature T (0.5, 0.5), when additive noise and no noise is
introduced in the measurement (8.13), for various (N0, N)

N0, N T no noise T 1% noise T 5% noise T analytical

20,20 1.25046 1.24302 1.21326 1.25000
40,40 1.25003 1.24030 1.20135 1.25000
80,80 1.25000 1.24241 1.21207 1.25000

160,160 1.25000 1.24693 1.23466 1.25000

of the system of linear equations decreases with increasing the instant at which the additional boundary-temperature
measurements are made. Analogous inverse problems which require finding the spacewise or time-dependent heat-
transfer coefficient are deferred to a future work. Future work will also involve extensions to higher dimensions in
which the spacewise variation of the unknown coefficients in the boundary conditions becomes more meaningful
than in the one-dimensional case in which two constants only had to be retrieved.
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